Missing Data

Li, Steven Cheng-Xian, and Benjamin M. Marlin A scalable end-to-end Gaussian process adapter for irregularly sampled time series classification. Advances in Neural Information Processing Systems., 2016. Abstractli-nips2016.pdf

We present a general framework for classification of sparse and irregularly-sampled time series. The properties of such time series can result in substantial uncertainty about the values of the underlying temporal processes, while making the data difficult to deal with using standard classification methods that assume fixed-dimensional feature spaces. To address these challenges, we propose an uncertainty-aware classification framework based on a special computational layer we refer to as the Gaussian process adapter that can connect irregularly sampled time series data to to any black-box classifier learnable using gradient descent. We show how to scale up the required computations based on combining the structured kernel interpolation framework and the Lanczos approximation method, and how to discriminatively train the Gaussian process adapter in combination with a number of classifiers end-to-end using backpropagation.

Adams, Roy J., Rajani S. Sadasivam, Kavitha Balakrishnan, Rebecca L. Kinney, Thomas K. Houston, and Benjamin M. Marlin. "PERSPeCT: Collaborative Filtering for Tailored Health Communications." Proceedings of the 8th ACM Conference on Recommender Systems. RecSys '14. New York, NY, USA: ACM, 2014. 329-332. Abstractperspect-recsys14.pdf

n/a

The goal of computer tailored health communications (CTHC) is to elicit healthy behavior changes by sending motivational messages personalized to individual patients. One prominent weakness of many existing CTHC systems is that they are based on expert-written rules and thus have no ability to learn from their users over time. One solution to this problem is to develop CTHC systems based on the principles of collaborative filtering, but this approach has not been widely studied. In this paper, we present a case study evaluating nine rating prediction methods for use in the Patient Experience Recommender System for Persuasive Communication Tailoring, a system developed for use in a clinical trial of CTHC-based smoking cessation support interventions.

Marlin, Benjamin M., Richard S. Zemel, Sam T. Roweis, and Malcolm Slaney. "Recommender Systems, Missing Data and Statistical Model Estimation." IJCAI. 2011. 2686-2691. Abstractmissing_data_ijcai11_paper.pdf

The goal of rating-based recommender systems is to make personalized predictions and recommendations for individual users by leveraging the preferences of a community of users with respect to a collection of items like songs or movies. Recommender systems are often based on intricate statistical models that are estimated from data sets containing a very high proportion of missing ratings. This work describes evidence of a basic incompatibility between the properties of recommender system data sets and the assumptions required for valid estimation and evaluation of statistical models in the presence of missing data. We discuss the implications of this problem and describe extended modelling and evaluation frameworks that attempt to circumvent it. We present prediction and ranking results showing that models developed and tested under these extended frameworks can significantly outperform standard models.

Marlin, Benjamin M., and Richard S. Zemel. "Collaborative prediction and ranking with non-random missing data." RecSys. 2009. 5-12. Abstract

A fundamental aspect of rating-based recommender systems is the observation process, the process by which users choose the items they rate. Nearly all research on collaborative filtering and recommender systems is founded on the assumption that missing ratings are missing at random. The statistical theory of missing data shows that incorrect assumptions about missing data can lead to biased parameter estimation and prediction. In a recent study, we demonstrated strong evidence for violations of the missing at random condition in a real recommender system. In this paper we present the first study of the effect of non-random missing data on collaborative ranking, and extend our previous results regarding the impact of non-random missing data on collaborative prediction.

Marlin, Benjamin M., Richard S. Zemel, Sam T. Roweis, and Malcolm Slaney. "Collaborative Filtering and the Missing at Random Assumption." UAI. 2007. 267-275. Abstract

Rating prediction is an important application, and a popular research topic in collaborative filtering. However, both the validity of learning algorithms, and the validity of standard testing procedures rest on the assumption that missing ratings are missing at random (MAR). In this paper we present the results of a user study in which we collect a random sample of ratings from current users of an online radio service. An analysis of the rating data collected in the study shows that the sample of random ratings has markedly different properties than ratings of user-selected songs. When asked to report on their own rating behaviour, a large number of users indicate they believe their opinion of a song does affect whether they choose to rate that song, a violation of the MAR condition. Finally, we present experimental results showing that incorporating an explicit model of the missing data mechanism can lead to significant improvements in prediction performance on the random sample of ratings.