RBMs

Huang, Haibin, Evangelos Kalogerakis, and Benjamin Marlin. "Analysis and synthesis of 3D shape families via deep-learned generative models of surfaces." Symposium on Geometry Processing. 2015. Abstracthuang-sgp2015.pdf

We present a method for joint analysis and synthesis of geometrically diverse 3D shape families. Our method first learns part-based templates such that an optimal set of fuzzy point and part correspondences is computed between the shapes of an input collection based on a probabilistic deformation model. In contrast to previous template-based approaches, the geometry and deformation parameters of our part-based templates are learned from scratch. Based on the estimated shape correspondence, our method also learns a probabilistic generative model that hierarchically captures statistical relationships of corresponding surface point positions and parts as well as their existence in the input shapes. A deep learning procedure is used to capture these hierarchical relationships. The resulting generative model is used to produce control point arrangements that drive shape synthesis by combining and deforming parts from the input collection. The generative model also yields compact shape descriptors that are used to perform fine-grained classification. Finally, it can be also coupled with the probabilistic deformation model to further improve shape correspondence. We provide qualitative and quantitative evaluations of our method for shape correspondence, segmentation, fine-grained classification and synthesis. Our experiments demonstrate superior correspondence and segmentation results than previous state-of-the-art approaches.

Kae, Andrew, Erik Learned-Miller, and Benjamin M. Marlin The Shape-Time Random Field for Semantic Video Labeling. 2014 IEEE Conference on Computer Vision and Pattern Recognition., 2014. Abstractstrf_cvpr14.pdf

We propose a novel discriminative model for semantic labeling in videos by incorporating a prior to model both the shape and temporal dependencies of an object in video. A typical approach for this task is the conditional random field (CRF), which can model local interactions among adjacent regions in a video frame. Recent work [16, 14] has shown how to incorporate a shape prior into a CRF for improving labeling performance, but it may be difficult to model temporal dependencies present in video by using this prior. The conditional restricted Boltzmann machine (CRBM) can model both shape and temporal dependencies, and has been used to learn walking styles from motion- capture data. In this work, we incorporate a CRBM prior into a CRF framework and present a new state-of-the-art model for the task of semantic labeling in videos. In particular, we explore the task of labeling parts of complex face scenes from videos in the YouTube Faces Database (YFDB). Our combined model outperforms competitive baselines both qualitatively and quantitatively.

Swersky, Kevin, Bo Chen, Benjamin M. Marlin, and Nando de Freitas. "A tutorial on stochastic approximation algorithms for training Restricted Boltzmann Machines and Deep Belief Nets." ITA. 2010. 80-89. Abstract

In this study, we provide a direct comparison of the Stochastic Maximum Likelihood algorithm and Contrastive Divergence for training Restricted Boltzmann Machines using the MNIST data set. We demonstrate that Stochastic Maximum Likelihood is superior when using the Restricted Boltzmann Machine as a classifier, and that the algorithm can be greatly improved using the technique of iterate averaging from the field of stochastic approximation. We further show that training with optimal parameters for classification does not necessarily lead to optimal results when Restricted Boltzmann Machines are stacked to form a Deep Belief Network. In our experiments we observe that fine tuning a Deep Belief Network significantly changes the distribution of the latent data, even though the parameter changes are negligible.

Marlin, Benjamin M., Kevin Swersky, Bo Chen, and Nando de Freitas. "Inductive Principles for Restricted Boltzmann Machine Learning." AISTATS. 2010. 509-516. Abstract

Recent research has seen the proposal of several new inductive principles designed specifically to avoid the problems associated with maximum likelihood learning in models with intractable partition functions. In this paper, we study learning methods for binary restricted Boltzmann machines (RBMs) based on ratio matching and generalized score matching. We compare these new RBM learning methods to a range of existing learning methods including stochastic maximum likelihood, contrastive divergence, and pseudo-likelihood. We perform an extensive empirical evaluation across multiple tasks and data sets.