Publications

Export 51 results:
Sort by: Author Type
2017
Adams, Roy J., and Benjamin M. Marlin. "Learning Time Series Detection Models from Temporally Imprecise Labels." The 20th International Conference on Artificial Intelligence and Statistics. 2017. Abstractadams17a.pdf

In this paper, we consider a new low-quality label learning problem: learning time series detection models from temporally imprecise labels. In this problem, the data consist of a set of input time series, and supervision is provided by a sequence of noisy time stamps corresponding to the occurrence of positive class events. Such temporally imprecise labels commonly occur in areas like mobile health research where human annotators are tasked with labeling the occurrence of very short duration events. We propose a general learning framework for this problem that can accommodate different base classifiers and noise models. We present results on real mobile health data showing that the proposed framework significantly outperforms a number of alternatives including assuming that the label time stamps are noise-free, transforming the problem into the multiple instance learning framework, and learning on labels that were manually re-aligned.

Dadkhahi, Hamid, and Benjamin Marlin Learning Tree-Structured Detection Cascades for Heterogeneous Networks of Embedded Devices. 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining., 2017. Abstractfp0911-dadkhahia.pdf

To appear.

In this paper, we present a new approach to learning cascaded classifiers for use in computing environments that involve networks of heterogeneous and resource-constrained, low-power embedded compute and sensing nodes. We present a generalization of the classical linear detection cascade to the case of tree-structured cascades where different branches of the tree execute on different physical compute nodes in the network. Different nodes have access to different features, as well as access to potentially different computation and energy resources. We concentrate on the problem of jointly learning the parameters for all of the classifiers in the cascade given a fixed cascade architecture and a known set of costs required to carry out the computation at each node. To accomplish the objective of joint learning of all detectors, we propose a novel approach to combining classifier outputs during training that better matches the hard cascade setting in which the learned system will be deployed. This work is motivated by research in the area of mobile health where energy efficient real time detectors integrating information from multiple wireless on-body sensors and a smart phone are needed for real-time monitoring and the delivery of just-in-time adaptive interventions. We evaluate our framework on mobile sensor-based human activity recognition and mobile health detector learning problems.

2016
Jacek, Nicholas, Meng-Chieh Chiu, Benjamin Marlin, and Eliot J. B. Moss. "Assessing the Limits of Program-Specific Garbage Collection Performance." Programming Language Design and Implementation. 2016. Abstractp584-jacek.pdf

Distinguished Paper Award

We consider the ultimate limits of program-specific garbage collector performance for real programs. We first characterize the GC schedule optimization problem using Markov Decision Processes (MDPs). Based on this characterization, we develop a method of determining, for a given program run and heap size, an optimal schedule of collections for a non-generational collector. We further explore the limits of performance of a generational collector, where it is not feasible to search the space of schedules to prove optimality. Still, we show significant improvements with Least Squares Policy Iteration, a reinforcement learning technique for solving MDPs. We demonstrate that there is considerable promise to reduce garbage collection costs by developing program-specific collection policies.

Sadasivam, Rajani Shankar, Sarah L. Cutrona, Rebecca L. Kinney, Benjamin M. Marlin, Kathleen M. Mazor, Stephenie C. Lemon, and Thomas K. Houston. "Collective-Intelligence Recommender Systems: Advancing Computer Tailoring for Health Behavior Change Into the 21st Century." Journal of Medical Internet Research. 18.3 (2016). AbstractFull Text

What is the next frontier for computer-tailored health communication (CTHC) research? In current CTHC systems, study designers who have expertise in behavioral theory and mapping theory into CTHC systems select the variables and develop the rules that specify how the content should be tailored, based on their knowledge of the targeted population, the literature, and health behavior theories. In collective-intelligence recommender systems (hereafter recommender systems) used by Web 2.0 companies (eg, Netflix and Amazon), machine learning algorithms combine user profiles and continuous feedback ratings of content (from themselves and other users) to empirically tailor content. Augmenting current theory-based CTHC with empirical recommender systems could be evaluated as the next frontier for CTHC.

Natarajan, Annamalai, Gustavo Angarita, Edward Gaiser, Robert Malison, Deepak Ganesan, and Benjamin Marlin. "Domain Adaptation Methods for Improving Lab-to-field Generalization of Cocaine Detection using Wearable ECG." 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2016. Abstractnatarajan-ubicomp16.pdf

Mobile health research on illicit drug use detection typically involves a two-stage study design where data to learn detectors is first collected in lab-based trials, followed by a deployment to subjects in a free-living environment to assess detector performance. While recent work has demonstrated the feasibility of wearable sensors for illicit drug use detection in the lab setting, several key problems can limit lab-to-field generalization performance. For example, lab-based data collection often has low ecological validity, the ground-truth event labels collected in the lab may not be available at the same level of temporal granularity in the field, and there can be significant variability between subjects. In this paper, we present domain adaptation methods for assessing and mitigating potential sources of performance loss in lab-to-field generalization and apply them to the problem of cocaine use detection from wearable electrocardiogram sensor data.

Adams, Roy, Nazir Saleheen, Edison Thomaz, Abhinav Parate, Santosh Kumar, and Benjamin Marlin. "Hierarchical Span-Based Conditional Random Fields for Labeling and Segmenting Events in Wearable Sensor Data Streams." International Conference on Machine Learning. 2016. Abstracticml2016_hns.pdf

The field of mobile health (mHealth) has the potential to yield new insights into health and behavior through the analysis of continuously recorded data from wearable health and activity sensors. In this paper, we present a hierarchical span-based conditional random field model for the key problem of jointly detecting discrete events in such sensor data streams and segmenting these events into high-level activity sessions. Our model includes higher-order cardinality factors and inter-event duration factors to capture domain-specific structure in the label space. We show that our model supports exact MAP inference in quadratic time via dynamic programming, which we leverage to perform learning in the structured support vector machine framework. We apply the model to the problems of smoking and eating detection using four real data sets. Our results show statistically significant improvements in segmentation performance at the p=0.005 level relative to a hierarchical pairwise CRF.

Sadasivam, Rajani Shankar, Erin M. Borglund, Roy Adams, Benjamin M. Marlin, and Thomas K. Houston. "Impact of a Collective Intelligence Tailored Messaging System on Smoking Cessation: The Perspect Randomized Experiment." Journal of Medical Internet Research. 18.11 (2016): e285:1-13. AbstractFull Text

Background

Outside health care, content tailoring is driven algorithmically using machine learning compared to the rule-based approach used in current implementations of computer-tailored health communication (CTHC) systems. A special class of machine learning systems (“recommender systems”) are used to select messages by combining the collective intelligence of their users (ie, the observed and inferred preferences of users as they interact with the system) and their user profiles. However, this approach has not been adequately tested for CTHC.
Objective

Our aim was to compare, in a randomized experiment, a standard, evidence-based, rule-based CTHC (standard CTHC) to a novel machine learning CTHC: Patient Experience Recommender System for Persuasive Communication Tailoring (PERSPeCT). We hypothesized that PERSPeCT will select messages of higher influence than our standard CTHC system. This standard CTHC was proven effective in motivating smoking cessation in a prior randomized trial of 900 smokers (OR 1.70, 95% CI 1.03-2.81).
Methods

PERSPeCT is an innovative hybrid machine learning recommender system that selects and sends motivational messages using algorithms that learn from message ratings from 846 previous participants (explicit feedback), and the prior explicit ratings of each individual participant. Current smokers (N=120) aged 18 years or older, English speaking, with Internet access were eligible to participate. These smokers were randomized to receive either PERSPeCT (intervention, n=74) or standard CTHC tailored messages (n=46). The study was conducted between October 2014 and January 2015. By randomization, we compared daily message ratings (mean of smoker ratings each day). At 30 days, we assessed the intervention’s perceived influence, 30-day cessation, and changes in readiness to quit from baseline.
Results

The proportion of days when smokers agreed/strongly agreed (daily rating ≥4) that the messages influenced them to quit was significantly higher for PERSPeCT (73%, 23/30) than standard CTHC (44%, 14/30, P=.02). Among less educated smokers (n=49), this difference was even more pronounced for days strongly agree (intervention: 77%, 23/30; comparison: 23%, 7/30, P<.001). There was no significant difference in the frequency which PERSPeCT randomized smokers agreed or strongly agreed that the intervention influenced them to quit smoking (P=.07) and use nicotine replacement therapy (P=.09). Among those who completed follow-up, 36% (20/55) of PERSPeCT smokers and 32% (11/34) of the standard CTHC group stopped smoking for one day or longer (P=.70).
Conclusions

Compared to standard CTHC with proven effectiveness, PERSPeCT outperformed in terms of influence ratings and resulted in similar cessation rates.

Hiatt, Laura, Roy Adams, and Benjamin Marlin. "An Improved Data Representation for Smoking Detection with Wearable Respiration Sensors." IEEE Wireless Health. 2016. hiatt-wh2016.pdf

Late breaking extended abstract.

Dadkhahi, Hamid, Nazir Saleheen, Santosh Kumar, and Benjamin Marlin. "Learning Shallow Detection Cascades for Wearable Sensor-Based Mobile Health Applications." ICML On Device Intelligence Workshop. 2016. Abstractdadkhahi-icml-odi2017.pdf

The field of mobile health aims to leverage recent advances in wearable on-body sensing technology and smart phone computing capabilities to develop systems that can monitor health states and deliver just-in-time adaptive interventions. However, existing work has largely focused on analyzing collected data in the off-line setting. In this paper, we propose a novel approach to learning shallow detection cascades developed explicitly for use in a real-time wearable-phone or wearable-phone-cloud systems. We apply our approach to the problem of cigarette smoking detection from a combination of wrist-worn actigraphy data and respiration chest band data using two and three stage cascades.

Nguyen, Thai, Roy J. Adams, Annamalai Natarajan, and Benjamin M. Marlin. "Parsing Wireless Electrocardiogram Signals with Context Free Grammar Conditional Random Fields." IEEE Wireless Health. 2016. Abstractnguyen-wh2016.pdf

Recent advances in wearable sensor technology have made it possible to simultaneously collect multiple streams of physiological and context data from individuals as they go about their daily activities in natural environments. However, extracting reliable higher-level inferences from these raw data streams remains a key data analysis challenge. In this paper, we focus on the specific case of the analysis of data from wireless electrocardiogram (ECG) sensors. We present a new robust probabilistic approach to ECG morphology extraction using conditional random field context free grammar models, which have traditionally been applied to parsing problems in natural language processing. We introduce a robust context free grammar for parsing noisy ECG data, and show significantly improved performance on the ECG morphological labeling task.

Nguyen, Thai, Roy J. Adams, Annamalai Natarajan, and Benjamin M. Marlin Parsing Wireless Electrocardiogram Signals with the CRF-CFG Model. Conference on Uncertainty in Artificial Intelligence Machine Learning for Health Workshop., 2016. Abstractnguyen-uai-health2016.pdf

Recent advances in wearable sensor technology have made it possible to simultaneously collect multiple streams of physiological and context data from individuals as they go about their daily activities in natural environments. However, extracting reliable higher-level inferences from these raw data streams remains a key data analysis challenge. In this paper, we focus on the specific case of the analysis of data from wireless electrocardiogram (ECG) sensors. We present a new robust probabilistic approach to ECG morphology extraction using conditional random field context free grammar models, which have traditionally been applied to parsing problems in natural language processing. We introduce a robust context free grammar for parsing noisy ECG data, and show significantly improved performance on the ECG morphological labeling task.

Chiu, Meng-Chieh, Benjamin Marlin, and Eliot Moss. "Real-Time Program-Specific Phase Change Detection for Java Programs." 13th International Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools. 2016. Abstracta12-chiu.pdf

It is well-known that programs tend to have multiple phases in their execution. Because phases have impact on micro-architectural features such as caches and branch predictors, they are relevant to program performance and energy consumption. They are also relevant to detecting whether a program is executing as expected or is encountering unusual or exceptional conditions, a software engineering and program monitoring concern. We offer here a method for real-time phase change detection in Java programs. After applying a training protocol to a program of interest, our method can detect phase changes at run time for that program with good precision and recall (compared with a “ground truth” definition of phases) and with small performance impact (average less than 2%). We also offer improved methodology for evaluating phase change detection mechanisms. In sum, our approach offers the first known implementation of real-time phase detection for Java programs.

Li, Steven Cheng-Xian, and Benjamin M. Marlin A scalable end-to-end Gaussian process adapter for irregularly sampled time series classification. Advances in Neural Information Processing Systems., 2016. Abstractli-nips2016.pdf

We present a general framework for classification of sparse and irregularly-sampled time series. The properties of such time series can result in substantial uncertainty about the values of the underlying temporal processes, while making the data difficult to deal with using standard classification methods that assume fixed-dimensional feature spaces. To address these challenges, we propose an uncertainty-aware classification framework based on a special computational layer we refer to as the Gaussian process adapter that can connect irregularly sampled time series data to to any black-box classifier learnable using gradient descent. We show how to scale up the required computations based on combining the structured kernel interpolation framework and the Lanczos approximation method, and how to discriminatively train the Gaussian process adapter in combination with a number of classifiers end-to-end using backpropagation.

2015
Li, Steven Cheng-Xian, and Benjamin M. Marlin Classification of Sparse and Irregularly Sampled Time Series with Mixtures of Expected Gaussian Kernels and Random Features. 31st Conference on Uncertainty in Artificial Intelligence., 2015. Abstractli-uai2015.pdf

This paper presents a kernel-based framework for classification of sparse and irregularly sampled time series. The properties of such time series can result in substantial uncertainty about the values of the underlying temporal processes, while making the data difficult to deal with using standard classification methods that assume fixed-dimensional feature spaces. To address these challenges, we propose to first re-represent each time series through the Gaussian process (GP) posterior it induces under a GP regression model. We then define kernels over the space of GP posteriors and apply standard kernel-based classification. Our primary contributions are (i) the development of a kernel between GPs based on the mixture of kernels between their finite marginals, (ii) the development and analysis of extensions of random Fourier features for scaling the proposed kernel to large-scale data, and (iii) an extensive empirical analysis of both the classification performance and scalability of our proposed approach.

Li, Steven Cheng-Xian, and Benjamin M. Marlin. "Collaborative Multi-Output Gaussian Processes for Collections of Sparse Multivariate Time Series,." NIPS Time Series Workshop. 2015. Abstractli-nips-ts2015.pdf

Collaborative Multi-Output Gaussian Processes (COGPs) are a flexible tool for modeling multivariate time series. They induce correlation across outputs through the use of shared latent processes. While past work has focused on the computational challenges that result from a single multivariate time series with many observed values, this paper explores the problem of fitting the COGP model to collections of many sparse and irregularly sampled multivariate time series. This work is motivated by applications to modeling physiological data (heart rate, blood pressure, etc.) in Electronic Health Records (EHRs).

Adams, Roy J., Edison Thomaz, and Benjamin M. Marlin. "Hierarchical Nested CRFs for Segmentation and Labeling of Physiological Time Series." NIPS Workshop on Machine Learning in Healthcare. 2015. Abstractadams-nips-heath2015.pdf

In this paper, we address the problem of nested hierarchical segmentation
and labeling of time series data. We present a hierarchical
span-based conditional random field framework for this problem that
leverages higher-order factors to enforce the nesting constraints. The framework can
incorporate a variety of additional factors including higher order cardinality
factors. This research is motivated by hierarchical activity recognition problems
in the field of mobile Health (mHealth). We show that the specific model of interest in the mHealth setting supports exact MAP inference in quadratic time. Learning is accomplished in the structured support vector machine framework. We show positive results on real and synthetic data sets.

Iyengar, Srinivasan, Sandeep Kalra, Anushree Ghosh, David Irwin, Prashant Shenoy, and Benjamin Marlin. "iProgram: Inferring Smart Schedules for Dumb Thermostats." 10th Annual Women in Machine Learning Workshop. 2015. Abstract

Heating, ventilation, and air conditioning (HVAC) accounts for over 50% of a typical home's energy usage. A thermostat generally controls HVAC usage in a home to ensure user comfort. In this paper, we focus on making existing "dumb" programmable thermostats smart by applying energy analytics on smart meter data to infer home occupancy patterns and compute an optimized thermostat schedule. Utilities with smart meter deployments are capable of immediately applying our approach, called iProgram, to homes across their customer base. iProgram addresses new challenges in inferring home occupancy from smart meter data where i) training data is not available and ii) the thermostat schedule may be misaligned with occupancy, frequently resulting in high power usage during unoccupied periods. iProgram translates occupancy patterns inferred from opaque smart meter data into a custom schedule for existing types of programmable thermostats, e.g., 1-day, 7-day, etc. We implement iProgram as a web service and show that it reduces the mismatch time between the occupancy pattern and the thermostat schedule by a median value of 44.28 minutes (out of 100 homes) when compared to a default 8am-6pm weekday schedule, with a median deviation of 30.76 minutes off the optimal schedule. Further, iProgram yields a daily energy saving of 0.42kWh on average across the 100 homes. Utilities may use iProgram to recommend thermostat schedules to customers and provide them estimates of potential energy savings in their energy bills.

Huang, Haibin, Evangelos Kalogerakis, and Benjamin Marlin. "Analysis and synthesis of 3D shape families via deep-learned generative models of surfaces." Symposium on Geometry Processing. 2015. Abstracthuang-sgp2015.pdf

We present a method for joint analysis and synthesis of geometrically diverse 3D shape families. Our method first learns part-based templates such that an optimal set of fuzzy point and part correspondences is computed between the shapes of an input collection based on a probabilistic deformation model. In contrast to previous template-based approaches, the geometry and deformation parameters of our part-based templates are learned from scratch. Based on the estimated shape correspondence, our method also learns a probabilistic generative model that hierarchically captures statistical relationships of corresponding surface point positions and parts as well as their existence in the input shapes. A deep learning procedure is used to capture these hierarchical relationships. The resulting generative model is used to produce control point arrangements that drive shape synthesis by combining and deforming parts from the input collection. The generative model also yields compact shape descriptors that are used to perform fine-grained classification. Finally, it can be also coupled with the probabilistic deformation model to further improve shape correspondence. We provide qualitative and quantitative evaluations of our method for shape correspondence, segmentation, fine-grained classification and synthesis. Our experiments demonstrate superior correspondence and segmentation results than previous state-of-the-art approaches.

Mayberry, Addison, Yamin Tun, Pan Hu, Duncan SmithFreedman, Deepak Ganesan, Benjamin Marlin, and Christopher Salthouse CIDER: Enabling RobustnessPower Tradeoffs on a Computational Eyeglass. 21st Annual International Conference on Mobile Computing and Networking., 2015. Abstractcider.pdf

The human eye offers a fascinating window into an individual's health, cognitive attention, and decision making, but we lack the ability to continually measure these parameters in the natural environment. The challenges lie in: a) handling the complexity of continuous high-rate sensing from a camera and processing the image stream to estimate eye parameters, and b) dealing with the wide variability in illumination conditions in the natural environment. This paper explores the power--robustness tradeoffs inherent in the design of a wearable eye tracker, and proposes a novel staged architecture that enables graceful adaptation across the spectrum of real-world illumination. We propose, a system that operates in a highly optimized low-power mode under indoor settings by using a fast Search-Refine controller to track the eye, but detects when the environment switches to more challenging outdoor sunlight and switches models to operate robustly under this condition. Our design is holistic and tackles a) power consumption in digitizing pixels, estimating pupillary parameters, and illuminating the eye via near-infrared, b) error in estimating pupil center and pupil dilation, and c) model training procedures that involve zero effort from a user. We demonstrate that the system can estimate pupil center with error less than two pixels, and pupil diameter with error of one pixel (0.22mm). Our end-to-end results show that we can operate at power levels of roughly 7mW at a 4Hz eye tracking rate, or roughly 32mW at rates upwards of 250Hz.

Saleheen, Nazir, Amin Ali, Syed Monowar Hossain, Hillol Sarker, Soujanya Chatterjee, Benjamin Marlin, Emre Ertin, Mustafa al'Absi, and Santosh Kumar puffMarker : A Multi-Sensor Approach for Pinpointing the Timing of First Lapse in Smoking Cessation. 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing., 2015. Abstractpuff-marker.pdf

Smoking is the leading cause of preventable deaths. Mobile technologies can help to deliver just-in-time-interventions to abstinent smokers and assist them in resisting urges to lapse. Doing so, however, it requires identification of high-risk situations that may lead an abstinent smoker to relapse. In this paper, we propose an explainable model for detecting smoking lapses in newly abstinent smokers using respiration and 6-axis inertial sensors worn on wrists. We propose a novel method by identifying windows of data that represent the hand at the mouth. We then develop a model to classify into puff or non-puff. On the training data, the model achieves a recall rate of 98%, for a FP rate of 1.5%. When the model is applied to the data collected from 13 abstainers, the false positive rate is 0.3/hour. Among 15 lapsers, the model is able to pinpoint the timing of first lapse in 13 participants.

Kumar, S., and others. "Center of excellence for mobile sensor Data-to-Knowledge (MD2K)." Journal of the American Medical Informatics Association. 22.6 (2015): 1137-1142. AbstractFull Text

Mobile sensor data-to-knowledge (MD2K) was chosen as one of 11 Big Data Centers of Excellence by the National Institutes of Health, as part of its Big Data-to-Knowledge initiative. MD2K is developing innovative tools to streamline the collection, integration, management, visualization, analysis, and interpretation of health data generated by mobile and wearable sensors. The goal of the big data solutions being developed by MD2K is to reliably quantify physical, biological, behavioral, social, and environmental factors that contribute to health and disease risk. The research conducted by MD2K is targeted at improving health through early detection of adverse health events and by facilitating prevention. MD2K will make its tools, software, and training materials widely available and will also organize workshops and seminars to encourage their use by researchers and clinicians.

Iyengar, Srinivasan, Sandeep Kalra, Anushree Ghosh, David Irwin, Prashant Shenoy, and Benjamin Marlin. "iProgram: Inferring Smart Schedules for Dumb Thermostats." Proceedings of the 2Nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments. BuildSys '15. New York, NY, USA: ACM, 2015. 211-220. Abstractp211-iyengar.pdf

Heating, ventilation, and air conditioning (HVAC) accounts for over 50% of a typical home's energy usage. A thermostat generally controls HVAC usage in a home to ensure user comfort. In this paper, we focus on making existing "dumb" programmable thermostats smart by applying energy analytics on smart meter data to infer home occupancy patterns and compute an optimized thermostat schedule. Utilities with smart meter deployments are capable of immediately applying our approach, called iProgram, to homes across their customer base. iProgram addresses new challenges in inferring home occupancy from smart meter data where i) training data is not available and ii) the thermostat schedule may be misaligned with occupancy, frequently resulting in high power usage during unoccupied periods. iProgram translates occupancy patterns inferred from opaque smart meter data into a custom schedule for existing types of programmable thermostats, e.g., 1-day, 7-day, etc. We implement iProgram as a web service and show that it reduces the mismatch time between the occupancy pattern and the thermostat schedule by a median value of 44.28 minutes (out of 100 homes) when compared to a default 8am-6pm weekday schedule, with a median deviation of 30.76 minutes off the optimal schedule. Further, iProgram yields a daily energy saving of 0.42kWh on average across the 100 homes. Utilities may use iProgram to recommend thermostat schedules to customers and provide them estimates of potential energy savings in their energy bills.

2014
Natarajan, Annamalai, Edward Gaiser, Gustavo Angarita, Robert Malison, Deepak Ganesan, and Benjamin Marlin. "Conditional Random Fields for Morphological Analysis of Wireless ECG Signals." Proceedings of the 5th Annual conference on Bioinformatics, Computational Biology and Health Informatics. Newport Beach, CA: ACM, 2014. Abstractcrf_bcb2014.pdf

Thanks to advances in mobile sensing technologies, it has recently become practical to deploy wireless electrocardiograph sensors for continuous recording of ECG signals. This capability has diverse applications in the study of human health and behavior, but to realize its full potential, new computational tools are required to effectively deal with the uncertainty that results from the noisy and highly non-stationary signals collected using these devices. In this work, we present a novel approach to the problem of extracting the morphological structure of ECG signals based on the use of dynamically structured conditional random field (CRF) models. We apply this framework to the problem of extracting morphological structure from wireless ECG sensor data collected in a lab-based study of habituated cocaine users. Our results show that the proposed CRF-based approach significantly out-performs independent prediction models using the same features, as well as a widely cited open source toolkit.

Mayberry, Addison, Pan Hu, Benjamin Marlin, Christopher Salthouse, and Deepak Ganesan iShadow: Design of a Wearable, Real-Time Mobile Gaze Tracker. 12th International Conference on Mobile Systems, Applications, and Services., 2014. Abstractishadow_mobisys14.pdf

Continuous, real-time tracking of eye gaze is valuable in a variety of scenarios including hands-free interaction with the physical world, detection of unsafe behaviors, leveraging visual context for advertising, life logging, and others. While eye tracking is commonly used in clinical trials and user studies, it has not bridged the gap to everyday consumer use. The challenge is that a real-time eye tracker is a power-hungry and computation-intensive device which requires continuous sensing of the eye using an imager running at many tens of frames per second, and continuous processing of the image stream using sophisticated gaze estimation algorithms. Our key contribution is the design of an eye tracker that dramatically reduces the sensing and computation needs for eye tracking, thereby achieving orders of magnitude reductions in power consumption and form-factor. The key idea is that eye images are extremely redundant, therefore we can estimate gaze by using a small subset of carefully chosen pixels per frame. We instantiate this idea in a prototype hardware platform equipped with a low-power image sensor that provides random access to pixel values, a low-power ARM Cortex M3 microcontroller, and a bluetooth radio to communicate with a mobile phone. The sparse pixel-based gaze estimation algorithm is a multi-layer neural network learned using a state-of-the-art sparsity-inducing regularization function that minimizes the gaze prediction error while simultaneously minimizing the number of pixels used. Our results show that we can operate at roughly 70mW of power, while continuously estimating eye gaze at the rate of 30 Hz with errors of roughly 3 degrees.

Adams, Roy J., Rajani S. Sadasivam, Kavitha Balakrishnan, Rebecca L. Kinney, Thomas K. Houston, and Benjamin M. Marlin. "PERSPeCT: Collaborative Filtering for Tailored Health Communications." Proceedings of the 8th ACM Conference on Recommender Systems. RecSys '14. New York, NY, USA: ACM, 2014. 329-332. Abstractperspect-recsys14.pdf

n/a

The goal of computer tailored health communications (CTHC) is to elicit healthy behavior changes by sending motivational messages personalized to individual patients. One prominent weakness of many existing CTHC systems is that they are based on expert-written rules and thus have no ability to learn from their users over time. One solution to this problem is to develop CTHC systems based on the principles of collaborative filtering, but this approach has not been widely studied. In this paper, we present a case study evaluating nine rating prediction methods for use in the Patient Experience Recommender System for Persuasive Communication Tailoring, a system developed for use in a clinical trial of CTHC-based smoking cessation support interventions.