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ABSTRACT

Mobile health research on illicit drug use detection typically
involves a two-stage study design where data to learn detec-
tors is first collected in lab-based trials, followed by a de-
ployment to subjects in a free-living environment to assess
detector performance. While recent work has demonstrated
the feasibility of wearable sensors for illicit drug use detec-
tion in the lab setting, several key problems can limit lab-
to-field generalization performance. For example, lab-based
data collection often has low ecological validity, the ground-
truth event labels collected in the lab may not be available at
the same level of temporal granularity in the field, and there
can be significant variability between subjects. In this paper,
we present domain adaptation methods for assessing and mit-
igating potential sources of performance loss in lab-to-field
generalization and apply them to the problem of cocaine use
detection from wearable electrocardiogram sensor data.
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INTRODUCTION

Electrocardiography (ECG) is one of the most important
sensing modalities for continuous health monitoring in the
mobile environment. The applications of continuous ECG
monitoring are wide-ranging and include real-time detection
of cardiovascular diseases [16], illicit drug use [14, 7], stress
[18], and sleep apnea [3]. In this paper, we focus on the ap-
plication of wearable ECG to the problem of the detection of
cocaine use. When used in conjunction with other sensing
modalities, as well as with self report, ECG has the potential
to yield insight into the dynamics of addiction and relapse,
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and may help to inform the design of more effective person-
alized treatment plans.

A key barrier to realizing this potential is the issue of lab-
to-field generalization. Mobile health (mHealth) research on
drug use detection typically involves a two-stage study design
where data used to learn drug detection models is first col-
lected in lab-based trials, followed by a deployment to sub-
jects in a free-living environment to assess performance. In
the work of [7], for example, the data used to train a drug
intake detection model was collected under controlled condi-
tions from in-residence subjects in the lab setting. This model
was subsequently deployed to the field for evaluation. This
design is common to many recent mHealth studies including
studies designed to detect eating [21] and smoking [1].

However, it is clear that many aspects of these lab-based data
collection procedures have poor ecological validity. When
activities are scripted or controlled, the proportion of time
subjects spend performing target activities (including drug in-
take) will be significantly distorted. The way that subjects
consume drugs under scripted and controlled conditions also
may not be representative of their behavior in the natural field
environment. Indeed, data collected under controlled lab con-
ditions typically exercises a very limited number of the differ-
ent contexts relative the the field environment. These factors
can lead to significant differences between the distribution of
features extracted from wearable sensors in the lab and the
field. Additionally, the groups of subjects that participate in
lab and field-based studies are typically different, leading to a
further loss in performance when there is significant between-
subject variability in any aspect of behavior.

Another persistent problem in lab-to-field generalization is
the mismatch in the techniques employed to gather ground
truth activity labels. In drug detection studies, the ground-
truth data available in the lab is often fine-grained, including
precise start and end times for drug usage. In the field, sub-
jects are often asked to self report drug usage, but these self-
reports are known to be unreliable. Instead, drug use studies
typically rely on urine toxicology (utox) tests as a gold stan-
dard for establishing drug use within a specified time period
(i.e., the prior 24 hours). However, utox testing alone can not
localize the exact time intervals corresponding to drug use.
Hence, in drug use detection studies, the ground-truth labels



available in the lab are typically not available at the same level
of temporal granularity in the field.

The primary contributions of this paper are to catalog fac-
tors affecting lab-to-field generalizability for drug use detec-
tion, to present methodology for assessing the presence of
these factors in a drug detection study, and to evaluate do-
main adaptation-based methods for mitigating these factors.
We focus specifically on three key problems: (1) prior prob-
ability shift, which results from different class distributions
at train and test time [17]; (2) covariate shift, which results
from differences in the distribution of features [17]; and (3)
label granularity shift, a problem we define as the result of
changes in the temporal granularity of labels across domains.
To the best of our knowledge, this last problem has not been
addressed before in the context of ubiquitous computing ap-
plications. We note that between-subjects variability is not
a distinct factor, but can be a contributor to both prior prob-
ability shift and covariate shift. We explore these issues in
the context of a cocaine detection study using wearable ECG
sensors where the data exhibit all three factors.

We begin by briefly reviewing related work on drug use de-
tection and domain adaptation methods. This is followed by
a description of both the lab and field components of the co-
caine use study analyzed in this work. We then describe each
of the three factors (prior probability shift, covariate shift, and
label granularity shift) in detail, and present methods for as-
sessing the extent to which the first two factors are expressed
in a dataset. Next, we turn to the problem of mitigating each
of these factors. Finally, we present a detailed evaluation of
the proposed mitigation methodology. Our results show that
80% sensitivity and 90% specificity can be obtained for the
cocaine use detection problem in the field setting, but only
when accounting for these factors.

RELATED WORK

In this section, we briefly discuss prior work on detecting
drug use with wearable sensors, as well as work related to
prior probability shift, covariate shift, and label granularity
shift.

Perhaps the closest prior work to ours from an applications
standpoint is the work of Hossain et al. on detecting drug in-
take events in the field [7]. However, this study differs from
ours in two crucial ways. First, Hossain et al. treat the sub-
jects’ self-reported drug intake event timestamps as ground
truth despite the fact that they are of unknown quality. We in-
stead use utox measurements, which provide reliable ground
truth at lower temporal resolution. Second, Hossain et al.
used heart rate and accelerometer data as features to isolate
cocaine intake events from other confounding activities while
we use ECG morphology only.

In terms of domain adaptation methodology, a common ap-
proach to handling prior probability shift is to augment the
learning of classification models using instance weights that
better match the label distribution on the training set to that
of the test set. Once the weights are specified, standard cost
sensitive learning methods can be applied to learn the models
with the instance weights [4, 10, 8, 22].

The covariate shift problem has been studied in a number of
areas including human physical activity recognition [5]. A
common approach to dealing with covariate shift is to again
learn models with instance weights. The instance weights
are selected to provide a better match between the training
set feature distribution and the test set feature distribution.
The weights are often derived from density ratios between
the training and test feature distributions. In early work in this
area the feature distributions were estimated for the training
and test sets, and the density ratios were computed explicitly.
Later work observed that it is much more efficient to directly
estimate the density ratio [23]. Other work, including that of
Hachiya et al. [5] and Bickel et al. [2] account for covariate
shift while learning the primary classifier in a joint optimiza-
tion procedure with a specialized model. In this paper, we use
the two-stage approach of directly estimating density ratios,
followed by the application of instance weighted classifica-
tion models.

Finally, we are not aware of any prior work on the temporal
label granularity shift problem, although there are a number
of related problems in mobile health and ubiquitous comput-
ing. For example, the temporal label uncertainty problem oc-
curs when the time stamps associated with event labels are
noisy or uncertain. The segmentation boundary uncertainty
problem occurs when there is noise or uncertainty associated
with the start and end time stamps of activity sessions [15,
9]. Approaches to these problems are not well matched to
our setting as in our case the field labels provided by utox
assessment are only available at a daily resolution.

COCAINE STUDY AND FEATURE EXTRACTION

In this section, we describe the lab and field components of
the cocaine use study that this research was based on. We also
describe the features extracted from the data, which we use as
the basis for cocaine use detection.

Cocaine Study

Both the lab and field components of this study were funded
by the National Institute on Drug Abuse. Participants in both
studies had cocaine dependence, were not seeking treatment
and were compensated monetarily for study participation, up-
keep and maintenance of devices. All subjects reviewed and
signed a consent form approved by the local institutional re-
view board. In both study components, we used a Zephyr
BioHarness1 chest band paired with a Samsung Galaxy cell-
phone. These chest bands sample ECG at 250Hz and have
approximately 24 hours of battery life.

Lab study: In the lab-based study, subjects were seated on a
chair and cocaine was administered intravenously in the pres-
ence of an advanced cardiac life support certified research
nurse. The cocaine administration session was divided into
fixed and variable dosage sessions. In each of these sessions,
the quantity of cocaine consumed was carefully controlled.
Additionally, subjects performed a series of non-cocaine ac-
tivities including riding a stationary bike, smoking cigarettes,
watching television, reading, conversing, and eating meals.

1
www.zephyranywhere.com/products/bioharness-3

www.zephyranywhere.com/products/bioharness-3


Dataset # Mean Cocaine Non-cocaine
Subjects age use activities

Lab Study 10 43.7± 6 56h 59m 29h 23m
Field Study 5 46.8± 3 151h 46m 739h 25m

Table 1: Total number of hours of cocaine use and non-
cocaine activities over all subjects in lab and field datasets
respectively. Field statistics related to time of cocaine use are
based on self report.

For a detailed description of the lab study, we refer readers to
[14].

Field study: On the first day of the study (the habituation
day), the recruited subjects were briefed on the usage, upkeep
and maintenance of devices. The study involved 10 clinical
visits including the habituation day visit. Clinical visits were
not conducted on weekends and other holidays. During the
course of the study, participants were instructed to wear the
sensor continuously while performing their day-to-day activ-
ities (except for bathing). During each clinical visit, subjects
met with the experimenters for urine toxicology (utox) testing
and downloading data. A total of five subjects participated in
the field study. The study resulted in a total of 37 days of field
data (data from some weekend days was not captured due to
devices running out of power between visits to the study co-
ordinator).

Subjects reported periods of cocaine use along with the mon-
etary value of cocaine used. This information was entered
on the subject’s cellphone using an ecological momentary as-
sessment protocol. These entries were verified by the experi-
menter as part of compliance with the study protocol. In the
field study, the subjects were not asked to report on any activ-
ity other than cocaine use.

In Table 1, we report the number of subjects in the lab and
field datasets, as well as the time the subjects spent perform-
ing cocaine related activities. For the purpose of the field
study statistics, we give the self-reported time spent on co-
caine use activities and assume that time not self-reported as
cocaine related activities corresponds to non-cocaine activi-
ties. We next describe how features are extracted from the
ECG data recorded from the subjects during the study.

Feature Extraction

We perform three steps to extract ECG features for use in co-
caine detection from the wireless ECG sensor data collected
in the study. These steps are described below. The same pro-
cessing steps are used for data collected from both the lab and
field subjects.

1. ECG Morphology Extraction: We follow the same pro-
cessing steps described in [13], where the authors develop a
conditional random field (CRF) model to infer ECG mor-
phological structure. The ECG waveform corresponding
to a single normal cardiac cycle is characterized by three
peaks (P, R, T) and two troughs (Q, S) in the order P-Q-
R-S-T. The CRF model requires labeled data for training.
In this work, we hand-labeled between 20 and 500 clusters
of ECG cycles per subject (approximately two ECG cycles

per cluster). These clusters were selected uniformly at ran-
dom from all data available for each subject. Since there is
substantial variability in ECG waveforms across subjects,
we train and evaluate subject-specific CRF models for both
the lab and field subjects. The learned models can then be
applied to raw ECG data to infer the labels of peaks and
troughs.

2. ECG Feature Extraction: There is substantial evidence
from animal and human studies that cocaine use causes
changes in cardiovascular function that are observable in
ECG signals [6, 11, 12, 19]. From this literature we iden-
tified six ECG morphology features for use in cocaine de-
tection including the RR interval, QT interval, QTc (QT
with Bazett’s correction), QS interval, PR interval, and T-
wave height. These features are computed from the output
of Step 1.

3. ECG Feature Aggregation: In the last step we build his-
tograms of extracted feature values over sliding windows.
These histograms capture the distribution of base features
(RR interval, QT interval, etc.) in a temporal window, un-
like more basic mean or median-based statistical features
that are also more sensitive to outliers. The sliding win-
dow lengths were chosen to match the time windows in
which we would like to detect the target activity (e.g., con-
sumption of cocaine). We experimented with different win-
dow lengths ranging from 30 seconds to seven minutes and
found five minute windows to work well for cocaine detec-
tion.

To build histogram-based features we also require the num-
ber of histogram bins (or alternately the bin boundaries).
In our experiments we observed that computing histogram
features over four bins worked well. For each ECG fea-
ture we chose bin boundaries at the 33rd, 50th and 66th

percentiles. The percentiles were based on pooling data
from all lab subjects. To avoid absolute counts from influ-
encing downstream tasks, we normalize histogram counts
over bins such that they sum to one.

We next describe how the structure of this type of two-stage
lab-to-field study, which is very common in mHealth re-
search, can lead to limited generalization performance.

FACTORS LIMITING LAB-TO-FIELD GENERALIZATION

In this section, we describe three factors that can have a
significant impact on lab-to-field generalization performance
and discuss how they can be assessed given samples of data
from the lab and from the field. We illustrate each factor with
results derived from our cocaine detection study.

Prior Probability Shift

During the lab-based component of our study, each subject
spent roughly the same amount of time performing various
activities, and we have access to precise timestamps corre-
sponding to periods of cocaine use and non-cocaine activities
(the two labels of interest). During field-based data collec-
tion, subjects self-reported (via EMA’s) consuming cocaine
for a small fraction of the total time. The difference in the
amount of time subjects spend performing various activities
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Figure 1: (a) Proportion of time spent on cocaine and non-cocaine activities in lab and field environments respectively. Quanti-
fying covariate shift between lab and field datasets: (b) Mean accuracy ± standard error for the task of discriminating lab data
from field data. Distribution of lab and field classifier scores for (c) QS feature and (d) all features.

in the lab and field environments results in prior probabil-
ity shift. Prior probability shift is defined as a systematic
difference in the label proportions present in train and test
datasets. The likelihood of significant prior probability shift
increases as the ecological validity of lab-based data collec-
tion decreases.

The severity of prior probability shift can be easily charac-
terized in terms of the difference between the proportion of
labels of each type in the lab and in the field. In our study,
the base inference of interest is the prediction of cocaine use
over five minute windows, so the degree of prior probability
shift is directly reflected in the proportion of time that sub-
jects spend consuming cocaine. In Figure 1a, we summarize
the lab and field datasets in terms of the amount of time sub-
jects spend on cocaine use versus non-cocaine activities. As
expected, a smaller fraction of time is spent on cocaine use in
the field setting (about 17%), while the lab-based data collec-
tion protocol significantly over-represents the proportion of
time spent on cocaine use (about 66%).

Covariate Shift

Cocaine administration in the lab-based component of our
study was restricted to one day when subjects were ad-
ministered cocaine intravenously while not performing any
other activities. Non-cocaine activities were scripted and per-
formed by subjects in a very limited number of contexts that
are not representative of the complexity of natural field en-
vironments. However, performing cocaine and non-cocaine
activities in new contexts can result in significant changes in
the per-class feature distributions. This problem is referred
to as covariate shift. Covariate shift is defined as a system-
atic difference between the feature distributions contained in
training and test datasets. There is an increased possibility of
significant covariate shift when moving from lab-based train-
ing data to field-based test data.

The severity of covariate shift can be assessed by comparing
the distribution of features in lab and field data. Simple his-
tograms can reveal the presence of significant covariate shift

when they have an effect on the marginal distributions of the
features. The effects of covariate shift may be more subtle,
affecting the joint distribution of features while leaving the
univariate marginal distributions mostly invariant. This sce-
nario can be assessed by drawing equal sized samples of lab
and field data, and fitting a classification model that aims to
discriminate the data collected in the lab from the data col-
lected in the field. If the two distributions coincide, the ex-
pected accuracy achieved on this task will be 50%. As the
feature distributions diverge, the classification accuracy will
increase toward 100%.

In Figure 1b, we report the classification accuracy for dis-
criminating lab versus field data for a variety of ECG-based
features used for cocaine detection. We assess the classifica-
tion ability of these features when used individually and when
they are used in combination. The model used is ℓ2 regular-
ized logistic regression with hyper-parameters set via 10-fold
crossvalidation. We see that all accuracies are greater than
0.5, suggesting the presence of covariate shift.

Among the individual features, the QS distance obtains the
best accuracy indicating that it carries the most information
with respect to the task of discriminating lab data from field
data. In Figure 1c, we show histograms of the QS classi-
fier score function values when applied to the lab and field
datasets. If w and w0 are the optimal weight vector and bias
parameters learned for a logistic regression model, then the
classifier score function is simply w0 + w

T
x (see Equation

1 for details). For single features, the score function value is
a scaled and shifted version of the raw feature value, so Fig-
ure 1c reflects the class conditional QS distributions for the
lab and field datasets. We can see that the score function val-
ues are fairly distinct, with particularly low overlap for high
values of the score function.

In Figure 1d, we show histograms of the logistic regression
score function values for the lab and field datasets when train-
ing using all features. In this case, the score function is a
linear combination of all of the feature values. We can see
that there is substantially less overlap between the score func-
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Figure 2: Proposed two stage processing pipeline

tion values when using all features, which is consistent with
the increase in classification accuracy when using all features.
This is strong evidence for a significant multivariate covari-
ate shift effect between the lab and field datasets. However,
it also shows that the lab and field feature distributions are
not completely disjoint. As we will see, the presence of some
overlap is required for the application of instance weighting
methods to correct for covariate shift.

Label Granularity Shift

In the lab setting, subjects were closely monitored, and
the precise times and amounts of cocaine consumed are all
known exactly. In the field, subjects self-reported periods of
cocaine use as well as the dollar amount of the cocaine con-
sumed. However, for this subject population, self-reports of
the activity of interest can be quite unreliable. To obtain a
measurement that can be considered ground truth for whether
subjects consumed cocaine on a given day, urine samples
were collected during each visit for the duration of the study.
A semi-quantitative urine toxicology test (utox) is performed
on these samples. Utox test outcomes range from 300ng/mL
to 5000ng/mL. A positive utox (>300ng/mL) indicates the
presence of the cocaine metabolite benzoylecgonine. Ben-
zoylecgonine has an elimination half-life of roughly 13 hours
thus providing ground-truth evidence for the consumption of
cocaine in the period preceding the administration of the test.
We define label granularity shift as a difference between the
temporal granularity at which ground truth labels are defined
across domains. There is clearly a significant shift in tempo-
ral label granularity between the lab and the field settings in
our cocaine use study.

As with prior probability shift and covariate shift, label gran-
ularity shift is a systemic problem in many mHealth study
designs. It arises due to the fact that it is impractical for sub-
jects in field-based data collection protocols to provide labels
at the same level of temporal granularity that is possible in
lab-based data collection protocols where subjects are closely
monitored (and activity sessions are often video recorded).
Methods for detecting such shifts are not necessary as their
presence is obvious from the study design, but methods for
adapting detection models across large temporal discrepan-
cies are required to enable accurate lab-to-field generaliza-
tion. In the next section, we turn to the problem of mitigating
each of these three problems.

MITIGATING DATA SET SHIFTS

In this section, we present methods for mitigating factors
affecting lab-to-field generalizability of cocaine detection.
Given ECG features from a subject on a field day, f, our
goal is to predict whether the subject used cocaine on that

day. We propose a two-stage data processing and prediction
pipeline for this problem as shown in Figure 2. In the first
stage, we use a cocaine detection model to predict cocaine
usage at a fine grain level (e.g., 5-minute windows). In the
second stage, we use a utox prediction model which rolls up
the fine grain cocaine predictions into coarse grain cocaine
predictions (e.g., a predicted utox outcome for field day f ).

In the following sections, we describe dataset re-weighting
methods from the domain adaptation literature for dealing
with prior probability shift and covariate shift. These re-
weighting methods are introduced in the first stage of the pro-
cessing pipeline. We address the problem of label granularity
shift in the second stage of the processing pipeline where we
convert cocaine use predictions to utox predictions.

Notation

In the sections that follow, we will use upper case letters to
denote random variables and lower case letters to represent
realizations of random variables. We will let D be the num-
ber of features and N be the number of data cases. We will
let Y ∈ {−1, 1} be a binary random variable representing a
label, and yi be the label for data case i. We will let X ∈ R

D

be a random variable representing a feature vector and xi be
the feature vector for data case i.

Base Classifier

In our experiments, we use ℓ2 regularized logistic regression
as a base classifier. An instance is classified as belonging to
the positive class if P (yi = 1|xi) > 0.5, which is computed
as seen below where w0 is the bias and w is the weight vector.

P (yi = +1|xi) =
1

1 + exp(−(w0 + wTxi))
(1)

Given N training instances, the objective function is to max-
imize the conditional log likelihood of the training data, or
equivalently to minimize the negative log likelihood. To ac-
commodate the re-weighting of data cases to mitigate prior
probability and covariate shifts, we augment the standard
conditional log likelihood with a per data case importance
weight, δi(yi, xi), that can depend on the features and the la-
bel of the data case, as seen below. λ is the strength of the ℓ2
penalty added to avoid overfitting.

argmin
w

N∑

i=1

δi(yi, xi) log(1 + exp(−yi(w
Txi + w0))) + λ‖w‖2

Prior Probability Shift

Prior probability shift is characterized by different propor-
tions of class labels in the lab and field data. Let PL(Y ) be
the probability distribution of labels from the lab, and PF (Y )
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Figure 3: (a–b) Cocaine prediction curves for two sample field days. (c–d) Histogram features that represent cocaine use for the
same two sample field days.

be the distribution of labels from the field. To mitigate prior
probability shift, we learn the base classifier using instance
weights that correct for the difference between the class pro-
portions in the lab and field datasets.

Specifically, we instantiate instance specific weights

δi(yi, xi) as shown below where P̂F (yi) is an estimate of the
prior probability of label yi under the field data distribution,

and P̂L(yi) is an estimate of the prior probability of label
yi under the lab data distribution. These weights correct
the distribution of labeled instances in the lab data so that it
matches the label distribution of the field data.

δi(yi, xi) = P̂F (yi)/P̂L(yi) (2)

Recall that in the cocaine study xi corresponds to ECG fea-
tures in 5-minute sliding windows and yi are its associated

labels. Hence P̂L(Y ) can easily be estimated from the avail-
able lab data. We do not have direct access to 5-minute labels
from the field, so we instead estimate P̂F (Y ) based on the
proportion of time that subjects self-reported consuming co-
caine. While not perfect due to issues with self report, this
estimate is likely to be much closer to the true time spent on
cocaine consumption in the field than the lab proportions.

Covariate Shift

Covariate shift is characterized by significant differences in
PL(X) and PF (X), the lab and field feature distributions.
Learning under covariate shift has also been addressed by in-
corporating appropriate importance weights during training.
The importance weights needed to correct for covariate shift
are the ratio of the probability densities of test to train sets
PF (X)
PL(X) [20]. These weights can correct for the mismatch be-

tween lab and field distributions when the discrepancy be-

tween the distributions is moderate, but there is still overlap
between the support of the distributions.

While early approaches to computing the importance weights
attempted to model the individual densities directly, a better
approach is to directly estimate the density ratio. This can
be accomplished by learning a classifier to discriminate be-
tween feature vectors from the field (positive class), and the
lab (negative class), exactly as was done in the previous sec-
tion. If we define Q(xi) to be the probabilistic output of a
classification model for discriminating between lab and field
feature vectors, then the importance weights are defined as

δi(yi, xi) = 1/(1−Q(xi)) (3)

In our experiments, we use an ℓ2 regularized logistic regres-
sion model to estimate Q(xi) learned using 5-fold cross vali-
dation. Note that estimating this model does not rely on avail-
ability of cocaine use labels in either the lab or field data.

Label Granularity Shift

Label granularity shift is defined as a change in the temporal
granularity of the class labels from the lab to the field. To ad-
dress this problem, we propose a two-stage approach. We first
learn a model on the lab data to predict label probabilities at a
temporal granularity of 5-minute windows. Prior probability
shift or covariate shift corrections can be applied as described
above during the learning of this first stage model. The output
of the first stage model is a time series of predicted cocaine
use probabilities for each subject and each field day.

We then extract features from each time series of predicted
probabilities and learn a second-stage model that predicts
utox outcome from the extracted features. In this work, we
use a simple histogram feature extractor that compresses the



Self- utox utox

report <5000 ng/mL ≥5000 ng/mL

Cocaine use 2 24

No cocaine use 7 4

Table 2: Characterizing the field dataset (37 days) by utox
outcomes and subjects’ self-reporting

time series of cocaine use prediction over fine minute win-
dows into a histogram that indicates the proportion of win-
dows that fall into each bin. The bins correspond to ranges
of cocaine use probabilities. In our experiments, we used five
equally spaced bins.

Figure 3 illustrates the basic concept. The left plots show
the predicted probability of cocaine use for each five minute
window on two sample field days. The right plots show the
extracted histogram descriptors. The top plots correspond to
a day with cocaine use, while the bottom plots correspond to
no cocaine use. We can see from the left plots that time series
of predictions for both field days are noisy, but the period of
cocaine use is reasonably localized by the first stage cocaine
detection model. While the histogram descriptor discards the
temporal information about when periods of increased co-
caine use probability occur, the fact that they have occurred
is clearly captured by the descriptor. We note that if a greater
number of field days were available to estimate the utox pre-
diction model, a richer feature set could be used in this stage
of the pipeline.

The last step in handling label granularity shift is to learn a
utox prediction model that maps the histogram descriptors to
utox outcomes. We again use ℓ2 regularized logistic regres-
sion as the classifier. For our experiments, we convert utox re-
sults of 5000ng/mL and above to positive instances and utox
results below 5000ng/mL to negative instances. This is a rea-
sonable grouping of utox outcomes since it aligns with the
threshold used in clinical decision making to determine sig-
nificant amounts of cocaine i.e. utox ≥5000ng/mL. A lower
threshold could be used, but would result in even more imbal-
anced data for this particular study. The breakdown of posi-
tive and negative cases and how they correspond to self report
is shown in Table 2. We can see that on a total of four days, no
cocaine was reported, but the utox results showed significant
cocaine consumption. This grouping results in a ground truth
labeling based on utox with 28 positive days and 9 negative
days. Though the number of positive and negative instances
appear to be small, this is typical of many drug studies where
the cost to obtain such data can be very high.

PREDICTION MODELS AND EMPIRICAL PROTOCOLS

In this section, we describe the different cocaine detection
(Stage I) and utox prediction (Stage II) models we experi-
mented with, as well as several different application scenar-
ios motivated by potential use cases. Lastly, we describe the
evaluation metrics used to assess performance.

Stage I: Cocaine detection models

We use a penalized ℓ2 logistic regression classifier as the base
classifier for cocaine detection on five minute windows. We
choose the penalty, λ, by performing a leave-one-subject-out
importance weighted cross validation on the lab dataset [5].
We experimented with the default base classifier and three
extensions that incorporate the prior probability shift and co-
variate shift mitigation approaches described in the previous
section:

1. Default: In this model, we do not account for any type of
dataset shift by setting all δi(xi, yi) = 1.

2. Prior probability shift: In this model, we handle prior
probability shift by setting δi(xi, yi) according to Equation
2.

3. Covariate shift: In this model, we handle covariate shift
by setting δi(xi, yi) according to Equation 3.

4. Both shifts: In this model, we handle both covariate shift
and prior probability shift by setting δi(xi, yi) to the prod-
uct of their respective importance weights.2

Stage II: Utox prediction models

We use ℓ2 regularized logistic regression as the base classifier
for utox prediction models. We choose the logistic regres-
sion penalty, λ, by performing a 5-fold cross validation on
the training dataset. We consider several different feature sets
a described below:

1. Utox-default: This model uses the cocaine use probability
histogram features as described in the previous section. At
the utox prediction level, this model does not account for
any type of dataset shift.

2. EMA-based classifier: This model does not use any wear-
able sensor data, but instead relies on subjective self-report
for features. We extract three pieces of information for
each field day including self-reported cocaine use in hours,
self-reported monetary value of cocaine consumed, and
elapsed time between the last cocaine use event and the
time of the utox test. For field days in which this informa-
tion is missing, we set these features to zero.

3. Predict majority class: This model does not use any fea-
tures from either wearable sensors or self-reporting. It sim-
ply predicts the majority class on the training data. This
model takes advantage of the class imbalance in field utox
outcomes.

Application Scenarios

To evaluate the performance of the model variations de-
scribed in the previous sections, we investigated several sce-
narios that reflect possible real-world use cases for the appli-
cation of a wireless cocaine intake monitoring system. The

2Note that the product combination rule assumes that the two types
of shifts are independent. In many real world applications this may
not be the case since one underlying latent source may give rise to
multiple types of dataset shift. We leave further investigation of this
point to future work.



Prior access

Scenarios Lab Preceding field days within subject Field days from other subjects Test field day

dataset ECG Self-report Utox ECG Self-report Utox ECG Self-report

A – – – – – – – –

B – – – – – –

C –

D – – –

Table 3: This table describes four application scenarios that assume different access to prior field data. Scenario A assumes a
strict lab-to-field protocol with no prior field data available. It relies on a synthetic utox training dataset derived from lab data.
Scenario B assumes ECG and self-reported cocaine use data are available from field days prior to the test day for each field
subject. This relaxes the lab-to-field assumption by assuming that unlabeled or weakly labeled field data is available. Scenario C
augments this with prior access to ECG, self-report, and utox data from other field subjects, combining lab-to-field with across-
subjects generalization. Scenario D assumes that lab data is supplemented with prior utox data for the field subjects, allowing for
personalization to individual field subjects.

primary goal is to predict utox outcomes on a daily basis. We
assume that predictions are made at the end of each day.

The four scenarios that we focus on in this work are summa-
rized in Table 3. In all four scenarios, we assume we always
have access to lab data. This implies that all cocaine detection
models have access to the exact same lab dataset in all scenar-
ios. However, the instance specific weights δi(xi, yi) used to
mitigate dataset shifts change depending on what type of field
data we have prior access to. Across all four scenarios, we are
interested in handling dataset shifts in the cocaine detection
model, hence the utox prediction model always operates in
utox-default mode. We first describe each scenario in detail.
We present results for each scenario in the next section.

Scenario A - Strict Lab-to-Field: In this scenario, we as-
sume we only have access to lab data i.e. no prior access to
field data of any type (Table 3, Scenario A). The best we can
do in this scenario is to train a cocaine detection model while
not accounting for any type of dataset shift (i.e. the default
model).

Since we assume no prior field data in this scenario, we con-
struct a synthetic utox training set from lab data to train the
utox prediction model. Specifically, we process the lab data
to obtain daily cocaine use probability histogram descriptors
as shown in Figures 3c–d. We assume that lab days with co-
caine use sessions correspond to positive utox outcomes, and
days with only non-cocaine activities correspond to negative
utox outcomes. While utox values were not recorded in the
lab, sufficient cocaine was consumed by subjects that the tests
on those days would have been positive. This synthetic utox
training dataset has exactly twenty instances (one day with
cocaine use and one without for each of ten subjects).

To make utox predictions under this scenario, we first use the
lab data to train the cocaine prediction model. We then form
the synthetic utox training dataset and train a utox prediction
model. We then apply the cocaine detection model to each
test field day’s ECG data to produce cocaine use prediction
curves and extract the daily cocaine use histogram features.
Finally, we apply the trained utox prediction model to the
daily cocaine use histogram features.

Scenario B - Unlabeled/Weakly Labeled Field Data: In
this scenario, we assume we have prior access to two types
of field data: ECG data and self-reported cocaine use (Table
3, Scenario B). In particular, we assume that for each field
subject, we have prior access to ECG and self-reported co-
caine use for field days preceding the test field day. For test
field days for which there are no preceding field days (i.e. the
very first field day within each subject), we revert to using the
default model to make predictions like in scenario A.

Since we have no prior access to any data from the test field
day, we use ECG and self-reported cocaine use from preced-
ing field days to estimate importance weights for mitigating
dataset shifts in the first stage of the processing pipeline. We
handle label granularity shift in the second stage of the pro-
cessing pipeline. We follow the same steps as in scenario
A to predict utox outcomes for each test field day including
training the utox model on synthetic data derived from the lab
as this scenario assumes we do not have prior access to utox
measurements from the field.

Scenario C - Across Subjects: In this scenario, we assume
we have prior access to both ECG and self-reported cocaine
use data from prior field days for the test subject, as well as
ECG, self-reported cocaine use, and utox for all field days
from other subjects (Table 3, Scenario C). Importantly, we
have no access to utox outcomes for the test subject.

In this scenario, we estimate importance weights for prior
probability shift and covariate shift by using all available data
from the test subject and all of the available lab data, similar
to Scenario B. But, unlike Scenario B there are two important
differences: one, in this scenario we use data from the test
field day along with data from preceding field days to com-
pute importance weights for covariate shift and prior proba-
bility shift; two, this scenario assumes prior access to utox
measurements from other field subjects. The ECG data from
other field subjects is processed to extract histogram feature
descriptors and the labeled data cases are added to the syn-
thetic utox dataset extracted from the lab subjects when esti-
mating the utox prediction model.

Scenario D - Personalization: In this scenario, we assume
we have access to ECG, self-reported cocaine use data, and
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Figure 4: (a–e) Mean utox classification accuracies and standard errors over 37 field days (f–j) AUROC for utox prediction. Each
subfigure (left-to-right) corresponds to four scenarios and a variant of scenario D respectively.

utox measurements from prior field days for the test subject
(Table 3, Scenario D). We use prior field data exactly as in
scenario C, but with additional utox data cases coming from
the test subject’s prior field days instead of field days from
other subjects. This scenario thus models the online construc-
tion of personalized cocaine detection models.

Evaluation metrics

We report the mean accuracy and standard error for utox out-
come prediction over all 37 test field days, as well as the area
under the receiver operating characteristic curve (AUROC),
which is less sensitive to class imbalance. We use the prob-
abilities output by the utox prediction model as input to the
AUROC computation.

UTOX PREDICTION RESULTS

In this section, we present the results of applying the dataset
shift mitigation approaches to the four utox prediction ap-
plication scenarios presented in the previous section. We
present classification accuracies for all four scenarios along
with standard error bars in Figures 4a–d. We present AUROC
results for each scenario in Figure 4f–i respectively.

Scenario A - Strict Lab-to-Field: In scenario A, the default
model has an accuracy of 35% and an AUROC of 0.3, which
translates to thirteen correctly classified field days out of 37
days. The performance of the default model, which does not
account for any dataset shifts, is understandably low since the

field dataset was observed to have significant shifts relative to
the lab dataset in terms of both both class proportions and
feature distributions.

Scenario B - Unlabeled/Weakly Labeled Field Data: In
scenario B, the performance of the default model is identi-
cal to its performance in scenario A since this model does not
make use of the available unlabeled and weakly labeled data.
While the covariate shift and prior probability shift models re-
sult in improved accuracy relative to the default model (43%
and 60%, respectively), their performance in terms of AU-
ROC is worse for the covariate shift model and the same for
the prior probability shift model.

Scenario C - Across Subjects: In scenario C, all models im-
prove significantly in terms of mean accuracy with the intro-
duction of labeled utox data from other field subjects. All of
the models (including the default model that does not account
for dataset shifts at all) achieve an accuracy above 70%.

To explain this uniform accuracy increase, we also applied the
baseline classifier that simply predicts the training set major-
ity class for all test instances. This classifier achieves an ac-
curacy of 76% due to the class balance on the field data, the
same performance achieved by the default classifier. Thus,
a significant effect of introducing utox data from other sub-
jects is to decrease the initial prior probability shift between
the data used to train the utox model and the field data it is
applied to at test time.



Interestingly, the AUROC performance of the covariate shift
model increases significantly under Scenario C, where it out-
performs all the other models, while the prior probability shift
model performance actually decreases.

We also evaluate the EMA-based utox prediction model in
this scenario, which performs slightly worse than guessing
the majority class at 70%. This directly follows from the un-
reliability in subjective self-reporting. For eight of the 34 field
days that tested positive for cocaine (i.e. utox >300ng/mL),
either the dollar amount of cocaine consumed or the self-
reported cocaine use time was missing.

Scenario D - Personalization: In scenario D, the switch to
personalized models leads to further improvements in terms
of mean accuracy, with the model that accounts for both prior
probability shift and covariate shift obtaining 81% accuracy
and an AUROC above 0.8. In this scenario, all of the mod-
els for mitigating dataset shift strongly outperform the default
model in terms of both accuracy and AUROC. This suggests
that in the presence of between subject variability, methods
for mitigating dataset shift are most helpful when applied to
the problem of learning personalized models.

Utox-Level Prior Probability Shift: As a final experiment,
we extend the techniques to handle dataset shifts to the utox
prediction level as well. Up until now we have assumed the
utox prediction model operated in utox-default mode. How-
ever, since we know that there is prior probability shift at the
utox prediction level of the model as well, we explore the
application of a second level of prior probability shift miti-
gation during the learning of the utox prediction model. We
compute importance weights by computing the prior distri-
bution of positive and negative instances in the utox train set.
Specifically, positive utox instances in the train set are as-
signed weights as:

δi(xi, yi = +1) =
Prop. of preceding field days with +ve utox

Prop. of train set with +ve utox

and negative utox instances are assigned weights computed
using proportions of negative utox outcomes.

We apply the updated model to scenario D only. For test field
days which have no preceding field days we revert to using
utox-default prediction model. We present accuracy and AU-
ROC results for this variant in Figures 4e, j respectively.

As we can see, handling prior probability shift in both the
cocaine detection stage and utox prediction stage achieves
the best accuracy of any approach considered at 84% (31
field days correctly classified), while achieving an AUROC
of 0.81. An inspection of the ROC curve for this approach
(presented in Appendix A), shows that it achieves a sensitiv-
ity of 80% and a specificity of 90%.

DISCUSSION AND CONCLUSIONS

We have presented an approach to cocaine detection using
wearable sensors that mitigates three types of dataset shifts:
prior probability shift, covariate shift, and label granularity
shift. We have shown that models that handle dataset shifts,

especially under scenarios in which there is limited prior ac-
cess to field data, perform substantially better than models
that do not handle dataset shift at all (scenario A vs. D). Our
results indicate that having prior access to ECG and utox data
from within subjects improves classification accuracies when
compared to only having prior access to data from other sub-
jects (scenario B vs. C). We find that having prior access to
utox data and building a per-person cocaine detection model
resulted in the best classification accuracy and AUROC (sce-
nario D and its variant). These results suggest that wearable
sensor data can be used as a reliable resource along with sub-
jective self-reporting to detect cocaine use when accounting
for factors that otherwise limit lab-to-field generalization per-
formance.

Other mHealth applications that could benefit from the tech-
niques presented in this paper include the detection of eating
and smoking. In eating detection, experimenters have access
to fine grain labels (individual eating gestures) in lab-based
studies, but labels in the field environment are often coarse
grained (start and end times of meals). Similarly, in smoking
detection studies, label granularity shift results from having
access to individual smoking puff labels in the lab, but only
rough times that cigarettes were smoked in the field. The la-
bel granularity shift mitigation methodology developed here
could be applied to these domains with no modifications as
they typically use identical two-stage study designs.
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